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Survival-extinction phase transition in a bit-string population with mutation
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A bit-string model for the evolution of a population of haploid organisms, subject to competition, reproduc-
tion with mutation, and selection, is studied, using mean-field theory and Monte Carlo simulations. We show
that, depending on environmental flexibility and genetic variability, the model exhibits a phase transition
between extinction due to random drift and survival. For weak selection the population attains a neutral regime.
The mean-field theory describes the infinite-size limit, while simulations are used to study quasistationary
properties.
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I. INTRODUCTION

Many mathematical models have been proposed
describe the evolution of populations@1#, focusing on
varied aspects, for example, mutation accumulation@2–6#
and adaptation@7–14#. Since its introduction in the contex
of prebiotic evolution, Eigen’s model@2# of chemical repli-
cators has attracted increasing interest in the mathema
description of populations subject to natural selection a
mutation. As a model of molecular and viral evolution, ma
authors use it to study competition between replicators of
same species with different production rates@2,3# or different
kinds of replicators as, for example, competition betwee
viral population and the immune system@12#. Recently, the
quasispecies model was also used to study the more fu
mental problem of stability of different kinds of replicato
@14#.

A related problem is the development of a simple mo
capable of describing the response of a population to e
ronmental mutability. Of interest, for example, is the abil
of a population to adapt to rapid changes in its environme
In this paper, we propose a model in which a genome
represented as a string of binary symbols~a ‘‘bit-string’’ !
@4,15#, subject to mutation and selection. We use the mo
to study the consequences of variation of the conditions
fecting survival, related to environmental flexibility, and th
genetic variability of the population. Our main interest is
describe the conditions determining the extinction or survi
of the population. While our model~to be defined below! has
certain aspects in common with Eigen’s model~discrete ge-
nomic sequences, genome-dependent reproduction
ciency!, an important difference is that here, as is common
population biology studies@8#, we allow the population size
to fluctuate, even to the point of extinction.

In our model, the population evolves in discrete time w
nonoverlapping generations. It consists of haploid organis
defined by their genotype~a bit-string of G positions, or
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genes!. The individuals undergo asexual reproduction, su
ject to mutation, competition, and selection. Selection is r
resented though a survival probability that depends on
difference between a genome and a certainideal genome.
Varying the parameters in the survival probability, the im
plied ‘‘fitness landscape’’ varies from one having a sing
sharp peak to one having a broad maximum. Environme
changes can be represented via alteration of this ideal. In
present study, however, the ideal genome is fixed, allowin
systematic analysis of the effect of various other parame
upon survival, so as to provide a benchmark for understa
ing the effects of a variable environment in future work.

We develop a mean-field theory~MFT! that describes the
evolution of an infinite population exactly, since the latt
has no spatial structure. We also perform Monte Carlo sim
lations of the model. The latter are useful for studying flu
tuations due to finite population size, which are not captu
in the MFT. We determine the survival-extinction pha
boundary, and compare the temporal evolution, and the
nomic distribution of the population predicted by the MF
against simulation results.

The paper is organized as follows. In Sec. II, we defi
the model and in Sec. III, we develop the MFT. Section
describes the Monte Carlo simulation algorithm, while S
V reports the MFT and the simulation results. We present
conclusions in Sec. VI.

II. MODEL

We study a model for evolution of a population of haplo
individuals defined by their genomes, subject to competiti
asexual reproduction with mutation, and selection. In t
model, successive generations do not overlap. Each i
vidual is represented by a bit-string ofG positions~genes!,
denoted by the vectors5(s1 ,s2 , . . . ,sG), wheres i50 or
1. The survival probability of an individual in the give
environment is measured in relation to a ‘‘model individua
~or ‘‘ideal genome’’!, represented by the sequences i50,
i 51, . . . ,G. Each gene in state 1 represents a reduct
in survival probability, and carries the same weight,
dependent of its positioni. Thus, the Hamming distance from
the ideal genome, given byH5( is i , characterizes an
©2003 The American Physical Society15-1
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individual’s survival probability.~This type of survival prob-
ability has been used in several studies of age-structu
populations@9–11#.! The survival probability is given by

S~H !5
11eB

eH/Gt1eB
, ~1!

whereS(H) is the probability for an individual to survive u
to the stage in which she must compete with the rest of
population; individuals that survive the competition stage
on to reproduce offspring, as detailed below. The param
t, which plays a role analogous to temperature in equi
rium statistical mechanics, represents environmental flex
ity. The parameterB is related to the genetic variability of th
population, and represents mutational tolerance, playin
role analogous to the selection factor defined in certain th
ries of populations, to describe the influence of deleteri
mutations on the survival probability@15#. S(H)51 for H
50, and decays monotonically withH. We note that for
fixed H andB, the survival probability is an increasing func
tion of t, and that for fixedH and t, S is an increasing
function of B. For smallt and B, S(H) decays rapidly, so
that only individuals withH close to zero have an appre
ciable probability to survive~sharply peaked ‘‘fitness’’ land-
scape!. For larger values ofB the function exhibits a steplike
change fromS'1 to S'0 for H.BGt, with an inclination
;1/t. The Fermi-like functionS(H) was used in a similar
manner in the model of Thomset al. @9#. These authors de
fine a death probabilitypd5@eb(b2a)11#21, whereb is an
inverse temperature and (b2a) represents the difference be
tween the typical number of mutations in the population a
the number of mutations of the individual.

At reproduction, each organism is replaced by two o
spring. The latter are copies of their parent, with a cert
numberm of mutations. Each position has a probability ofl
to mutate~mutations 0→1 and 1→0 are considered equall
likely!, with mutations at different positions constituting in
dependent events. The number of mutationsm therefore fol-
lows a binomial distribution. The mean number of mutatio
per reproduction event,lG, is set to unity in this study.

Competition amongst individuals is represented by the
miliar Verhulst factor

V512
N~ t !

Nmax
, ~2!

whereN(t) is the population at timet andNmax is the maxi-
mum capacity of the environment. The evolution of t
population proceeds by discrete time steps: at each step
Verhulst factor is applied by selecting at random~indepen-
dently ofH), NV survivors; the survivors go on to reproduc
as described above.

III. MEAN-FIELD THEORY

We have developed a mean-field description of the mo
defined above. For this model, which has no spatial struct
the deterministic mean-field description describes
infinite-size limit (Nmax→`) exactly. Differences betwee
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theory and simulation are due to fluctuations that appea
finite-sized systems, but that are absent in the infinite-s
limit.

In the full stochastic description there are 2G distinct ge-
nomess, and an integer-valued random variableNs(t)>0
for each. Our first step in constructing a simplified descr
tion is to reduce the set of variables toN(H,t): the number
of individuals with Hamming distanceH from the ideal, at
time t. Since the model does not distinguish between in
viduals with the same Hamming distance, the probability d
tribution at any timet.0 will be a function ofH only, if it is
so att50. We shall always suppose this to be the case.

In the mean-field theory, the discrete-time evolution of t
population may be written as

N~H,t11!5E@N~H,t11!u$N~H,t !%#, ~3!

where$N(H,t)% represents the entire set of population va
ables at stept. In other words, the population at stept11 is
approximated by itsexpected value, given the distribution at
stept. ~The latter, in turn, is given by the expected distrib
tion, given that for timet21, and so on.! The integer-valued
random variables of the exact description are therefore
placed by a set of real-valued, deterministic variables.

Each step of the evolution consists of two stages:~1!
death of individuals due to competition for resources~‘‘Ver-
hulst stage’’! and~2! reproduction with selection. In the Ver
hulst stage, the total population sizeN5(HN(H) is evalu-
ated; then each subpopulation is reduced by the same fa
V512N/Nmax, yielding the values

N8~H !5VN~H !, H50, . . . ,G. ~4!

Note that the Verhulst stage involves an interaction betw
individuals@N8(H) is a nonlinear function of allN(H)], and
that each individual interacts equally with all others in th
process.

In the reproduction stage each individual is replaced b
pair of offspring that have, in general, Hamming distanc
different from those of the parent. We assume independ
equally probable mutations at each site, so that the numbe
mutationsm in a given reproduction event is binomially dis
tributed:

P~m!5S G

mD lm~12l!G2m. ~5!

@SinceG@1, while the mean number of mutationslG is of
order unity, we may approximateP(m) by a Poisson distri-
bution in simulations; we retain the binomial distribution
the MFT analysis.#

Each reproduction event may be represented schem
cally asH8→H1 ,H2, whereH8 denotes the Hamming dis
tance of the parent andH1 and H2 those of the offspring.
Since H8→H1 and H8→H2 are independent events~even
though they happen simultaneously!, it suffices to consider
one such, i.e.,H8→H; let W(HuH8) represent its probabil-
ity. If the offspring differs from its parent at exactlym posi-
tions, then,
5-2
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max@0,H82m#<H<min@H81m,G#.

Let m5m01m1, with m0 the number of mutations 0→1
and m1 the number of type 1→0. Each event is characte
ized by H8, m, andm0. ~Evidently, H5H81m02m15H8
12m02m.! The probability of such an event is given by th
hypergeometric distribution:
c
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p~m0um,G,H8!5

S G2H8

m0
D S H8

m2m0
D

S G

mD . ~6!

Now usingm05(H2H81m)/2, we have
W~HuH8!5~G2H8!!H8! (
m50

G
lm~12l!G2m

S H2H81m

2 D ! S H82H1m

2 D ! S G2
H1H81m

2 D ! S H81H2m

2 D !

. ~7!
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Next we observe that the expected number ofsurvivingoff-
spring with Hamming distanceH produced by a parent with
Hamming distanceH8 is W̃(HuH8)[2S(H)W(HuH8). Thus
the expected number of individuals with Hamming distan
H, at stept11 is

E@N~H,t11!u$N~H8,t !%#5 (
H850

G

W̃~HuH8!N8~H8!,

~8!

whereN8(H8) is the distribution just after the Verhulst ste
The evolution of the population is found via numerical iter
tion of Eqs.~4! and ~8!.

IV. SIMULATION ALGORITHM

We study the evolution of the model population in t
Monte Carlo simulations. Initially,N05Nmax/10 individuals
of G5128 bits are generated, each with a random gene
quence,s5(s1 ,s2 , . . . ,sG), wheres i50 or 1 with equal
likelihood. The procedure is as follows.

~1! The Verhulst factorV512N(t)/Nmax is evaluated.
Then for each individual, a random numbers is generated;
the individual survives~dies! if s,V (s.V).

~2! Each individual reproduces: two copies are creat
with possible mutations. The number of mutationsm is given
by a random integer, chosen from a Poisson distribution w
parameter 1. The mutation loci are selected at random.

~3! For each daughter, the Hamming distanceH from the
ideal is evaluated, and a random numberr, uniform on@0,1#
is generated. Ifr<S(H), the individual survives; otherwise
it dies.

During the simulations, we record the population, avera
Hamming distance, the average survival probability,

^S~ t !&5
1

N~ t ! (
i 51

N(t)

S~Hi !, ~9!

and thesurvival rate, S(t)[N(t)/N(t21). ~Note that in
general^S(t)&,1, while S(t) may, in principle, take any
non-negative value, and is unity in the stationary state.! De-
pending on the parameterst, B, and Nmax, the population
e

-

e-

,

h

e

may survive until a certain maximum time (tmax530 000
steps in the simulations!, attaining a quasistationary state,
may go extinct. We record the Hamming distance distrib
tion in the quasistationary state.

V. RESULTS AND DISCUSSION

Depending on the values ofB andt that characterize the
survival probability functionS(H), Eq. ~1!, the population
either survives or goes extinct. In the mean-field theory t
is a sharp transition. In simulations, due to finite populat
size, fluctuations into the absorbing state~population zero!
are to be expected. Indeed, for anyfinite system size the
population must eventually go extinct due to random drift
the process is permitted to continue indefinitely. We ad
tmax530 000 as a convenient maximum time, allowing us
discriminate between survival and extinction, and~in the
former case!, study quasistationary properties, except ve
near the transition, where, as noted, the sharp distinctio
blurred by fluctuations.

Figure 1 shows the phase boundary between survival
extinction in theB-t plane, comparing the mean-field pre
diction against simulations usingNmax5104,105, and 5
3105. As Nmax is increased, the survival-extinction lin
found in simulation approaches the MFT prediction, as
pected. For small values oft ~a ‘‘hard’’ or inflexible envi-
ronment!, survival of the population requires high values
B, the mutational tolerance. The mean-field surviv
extinction line of the diagram is obtained by fixing the p
rametert and measuring the stationary population dens
r5N/Nmax as a function ofB. Near the transition,r depends
linearly onB: r}B2Bc(t), as is normally the case in mean
field descriptions of a continuous phase transition to an
sorbing state@16#. The line Bc(t) is readily obtained via
linear regression to ther(B) data near the transition. Not
that Bc50 for t.0.192. Fort!1, on the other hand,Bc
}1/t. ~Increasing the mutation probabilityl, the phase
boundary is displaced upward and to the right, enlarging
extinction region.! Figure 2 is a three-dimensional plot of th
population density as a function ofB and t; the extinction
region is evident, as is the monotonic growth ofr with either
parameter.
5-3
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Figure 3 presents a typical evolution of the populati
densityr(t). For B andt in the survival phase, the popula
tion exhibits a rapid initial decay and then evolves to
quasistationary state. Simulation and MFT evolutions are
good agreement, despite fluctuations in the former.

The quasistationary distribution of Hamming distanc
obtained in simulation is compared in Fig. 4 with the statio
ary distribution predicted by the MFT. In all cases, the d
tribution peaks near the mean value^H&, and has a generally
Gaussian appearance. For fixedt, we observe that̂H& in-
creases monotonically withB, attaining aplateau, if t is
sufficiently large. The plateau value is^H&.64, i.e., half the
genome size, since this corresponds to the largest numb
genome sequences. The plateau indicates that the popul
has attained a neutral regime: individuals have nearly
same survival probability, independent of the Hamming d
tance, due to weak selection. For fixedB, we observe that
^H& increases witht, until attaining^H&564. The variance
of the distribution behaves similarly. Its saturation value

FIG. 1. Survival-extinction phase boundary in theB-t plane for
lG51. The solid line is the MFT prediction; dashed lines repres
simulation results forNmax553105, 105, and 104 ~bottom to top!.

FIG. 2. Population densityr as a function ofB andt from the
MFT. For t>0.192, the population survives for any value ofB.
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about 32 the value expected for a binomial distribution w
p51/2 and N5128, giving a standard deviations.5.7.
Figure 5 shows the stationary values of^H& andsH as func-
tions of B, as predicted by the MFT; simulations yield ve
similar behavior. In simulations, extinction occurs at larg
B values than are predicted by the MFT, due to finite-s
effects, as noted above; the difference between simula
and theory diminishes with increasing system size.

VI. SUMMARY

We propose a bit-string model of the evolution of a simp
haploid population. Similarly to previous studies@9–11#, the
model includes the effect of enviromental flexibility and to
erance to genetic differences on the survival probability. U
like previous works, we employ a survival probability that
a monotonic increasing function of the parametersB and t
that represent tolerance of genetic difference between a g

t

FIG. 3. Time evolution of the population densityr for t50.1
and B54, in the MFT ~smooth curve! and simulation (Nmax

5105).

FIG. 4. Stationary Hamming distance distribution for vario
parameters, as indicated.
5-4
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genome and the ideal. The model is studied via comp
simulations and the mean-field theory, which are in go
agreement.

The model, like many others in population dynamics
epidemic analysis, exhibits a continuous transition betw
an active phase~survival! and an absorbing one~extinction!.
We map out the phase boundary in theB-t plane, and find
clear evidence of mean-field-like critical behavior, as in oth
population models lacking spatial structure@16#. The mean-
field description is exact in the infinite-size limit, but pro

FIG. 5. Dependence of Hamming distance onB for t50.1 in the
MFT. Central line: mean Hamming distance,^H&; upper and lower
lines represent one standard deviation above or below the mea
s
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vides no information regarding fluctuations. On the oth
hand, simulations for parameter values in the active ph
yield information on the quasistationary state of a finite s
tem (Nmax,`). It is also of interest to obtain thelifetimeof
this quasistationary state, or, equivalently, the mean fi
passage time to extinction. Such information can, in pr
ciple, be obtained from simulations, or from a probabilis
analysis of finite populations starting from the master eq
tion @17#. Given the large number of random variables i
volved (G11, if we assume that the probability depen
only on Hamming distanceH), the multivariate Fokker-
Planck equation would seem the most convenient tool; th
retical analysis of finite populations is left as subject for f
ture work. The simulation results reported here should pr
useful in testing such theories.

Another interesting direction for future study is the r
sponse of the population to changes in the environm
Such changes can be represented by variations in the
genome~as presented in Refs.@10,11,18#! and/or in the pa-
rameterst, B, l, and Nmax. A related question is that o
transitions in the genome distribution when two or mo
ideals ~corresponding to distinct, well-adapted types in t
‘‘fitness’’ landscape! exist. Studies of these problems usin
the bit-string model are in progress.
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